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Abstract Comparisons between observed and model-resolved gravity waves (GWs) are crucial for
evaluating general circulation model (GCM) simulation accuracy and understanding wave characteristics.
However, observational noise often obscures waves, complicating such comparisons. To address this, we have
developed a GW detection method using a convolutional neural network (CNN). The CNN is trained on
Atmospheric Infrared Sounder (AIRS) temperatures with labels indicating wave presence based on Berthelemy
et al. (2025, https://doi.org/10.5194/egusphere-2025-455). Their method detects noise-induced pixel-to-pixel
variations in horizontal wavelengths; in contrast, the CNN robustly identify waves even when applied to
smoothly varying model data. Using this method, we compare stratospheric GWs in boreal winters between
AIRS observations and a high-top GW-permitting GCM, Japanese Atmospheric GCM for Upper Atmosphere
Research (JAGUAR). The results agree well and exhibit similar interannual variability, with discrepancies also
identified, including a more zonally elongated distribution of tropical GWs in JAGUAR. This method is broadly
applicable to the future use of satellites for guiding wave-resolving atmospheric model development.

Plain Language Summary Gravity waves (GWs), small-scale waves driven by buoyancy, play an
important role in atmospheric dynamics by transporting momentum throughout the atmosphere. Two key
approaches to study the global characteristics of GWs are high-resolution satellite observations and numerical
simulations using climate models. However, observational noise can make it difficult to quantitatively compare
these two data sets. To reduce the impact of noise, we adopt a machine-learning approach. We train a
convolutional neural network (CNN) using satellite temperature measurements produced with the spectral
method of Berthelemy et al. (2025, https://doi.org/10.5194/egusphere-2025-455), where pixel-to-pixel changes
in horizontal wavelengths due to noise are used to identify waves. Once trained, we apply the CNN to evaluate
stratospheric GWs simulated by a high-resolution climate model with those observed by a satellite instrument.
The observed and simulated waves show good agreement, both exhibiting similar year-to-year variations. The
CNN enables fair and computationally efficient validation of climate models based on satellite observation.

1. Introduction

Atmospheric gravity waves (GWs) play a range of crucial roles in the climate system (Achatz et al., 2024;
Fritts, 1984; Fritts & Alexander, 2003). They are one of the key factors controlling the temperature, wind, and
chemistry of the middle atmosphere, which also influence the troposphere. However, due to their small spatial and
temporal scales, accurate representation of GWs remains challenging for weather and climate models.

In recent years, an increasing number of general circulation models (GCMs) have become available which
explicitly resolve GWs. ERAS5 has been widely used for studying relatively large-scale GWs (Gupta, Sheshadri,
Alexander, & Birner, 2024; Pahlavan et al., 2023; Podglajen et al., 2020; Yoshida et al., 2024), while kilometer-
scale model runs have been performed using models such as the European Centre for Medium-Range Weather
Forecasts (ECMWF) Integrated Forecasting System (Gupta, Sheshadri, & Anantharaj, 2024; Lear et al., 2024;
Rhode et al., 2024) and the Goddard Earth Observing System (GEOS-5) atmospheric GCM (Holt et al., 2017).
High-top GCMs covering the entire middle atmosphere have also been incorporated into GW research, including
the HIgh Altitude Mechanistic general Circulation Model (HIAMCM, Becker et al., 2022) and the Japanese
Atmospheric GCM for Upper Atmosphere Research (JAGUAR, Watanabe & Miyahara, 2009, see also Okui
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et al. (2021)). Despite improving skills of these high-resolution GCMs, uncertainties persist in processes such as
convection, radiation, and turbulence, which are linked to GW generation and dissipation. In long-running climate
simulations, GW parameterizations also remain essential. For a realistic model climatology, these parameters still
require tuning. However, since GW parameterizations are often implemented to alleviate model biases (e.g., Kim
et al., 2003), and wave forcings frequently compensate for one another (e.g., Cohen et al., 2013), GWs in “best-
tuned” models do not necessarily match observed GWs. Therefore, comparing observed and model-simulated
GWs provides valuable insight into both GW representation and overall model accuracy.

Satellite observations are a primary tool for understanding the global distribution of GW parameters (e.g.,
Alexander et al., 2010; Geller et al., 2013). Their extensive spatial coverage enables the global derivation of key
indicators for evaluating and improving GW representation in GCMs. For instance, Ern et al. (2018) examined a
GW momentum flux climatology created using atmospheric infrared emissions observed by two limb-sounding
satellite instruments, while Hindley et al. (2020) presented a climatology of stratospheric GWs based on three-
dimensional (3-D) temperature retrievals from the nadir-sounding Atmospheric Infrared Sounder (AIRS).

Despite their importance for model validation, the characteristics of GWs derived from observations are strongly
dependent on instrument characteristics (Alexander, 1998; Wright et al., 2016). Limb-sounding satellite in-
struments provide high vertical but low horizontal resolution, while nadir-sounding instruments offer low vertical
but high horizontal resolution. This has important implications for quantifying the role of GWs in the atmospheric
system. Long-vertical waves measured by nadir-sensing instruments tend to be more important to vertical mo-
mentum transport, while the short-vertical waves measured by limb-sensing instruments can travel significantly
longer horizontal distances. To ensure fair comparisons between observed and model-simulated GWs (hereafter
referred to as observation-to-model comparisons), observational filters matching instrument resolutions must be
applied to model data.

Additionally, and importantly, instrument noise can have a large influence. For AIRS temperature retrievals,
measurement noise ranges from 1.4 to 2.1 K at altitudes between 20 and 60 km (Hoffmann & Alexander, 2009).
Given that stratospheric GWs typically exhibit temperature amplitudes of a few to several Kelvins, this level of
noise can blur a substantial portion of wave signal. Retrieval errors arise from multiple sources, including in-
strument radiometric noise, deviations from retrieval constraints, and the effects of non-local thermal equilibrium
(non-LTE) in daytime data (Hoffmann & Alexander, 2009). Hindley et al. (2019) showed latitudinal and seasonal
variations of AIRS noise. Such noise variabilities complicate GW analysis based on satellite observations.

Accordingly, a key challenge in observation-to-model comparisons is reducing the influence of observational
noise. One approach is to add randomized observational noise directly to model temperature fields before
comparison (Hindley et al., 2021), however, Okui et al. (2023) found that even after adding randomized AIRS-
like noise, model data could still exhibit a lower noise level than the observations. This is likely because only
uncorrelated pixel-scale noise was included in the added noise. Lear et al. (2024) improved this by manually
selecting AIRS measurements with no visible waves from nighttime measurements during the same period of the
year and latitude regions, preserving structural noise, and adding them to model data. Although their method
could represent noise more realistically, small-amplitude GWs were also unintentionally removed by post-
processing using the commonly used amplitude-based noise removal method (hereafter referred to as the
“amplitude method”). They also suggested that machine learning could streamline the time-consuming process of
selecting measurements containing noise only.

Due to the random nature of instrument noise, spurious small-scale wavelengths have random orientations.
Therefore, the presence of a near-uniform wavelength distribution can act as a way to discriminate between waves
and noise. Berthelemy et al. (2025) used this insight to develop a novel wave-detection method to identify regions
where wavelength estimates produced using a 2-D S-Transform (ST, Stockwell et al., 1996; see also Hindley et al.
(2016)) show only small spatial variations. This approach, referred to as the “neighborhood method” due to its
analysis of local wavelength distributions, was shown to detect waves in AIRS temperature measurements more
accurately than the amplitude method. However, this method cannot be applied to model fields because they
contain no noise. This limits its usefulness for observation-to-model comparisons. Furthermore, the method can
be computationally expensive, as it requires spectral analysis using the 2-D ST.

Here, we present a universal detection method applicable for both model-simulated GWs and those in satellite
observations using a convolutional neural network (CNN) for semantic segmentation, based upon the U-net
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architecture. This builds on the previous work of Coney et al. (2023), who trained a U-net CNN to identify trapped
lee waves over Britain and Ireland in Met Office operational forecasts using hand-labeled wave masks. Instead of
hand-labeled regions, wave regions found by the neighborhood method of Berthelemy et al. (2025) are used as a
training data set for our CNN. In this study, we successfully apply the CNN to both observations and model
temperature fields and perform a global observation-to-model comparison of stratospheric GWs.

The data sets used in this study are described in Section 2. The CNN and analysis methods are detailed in
Section 3. Section 4 presents the results from the detection and comparisons between AIRS observations and
model simulations. In Section 5, we summarize the findings and discuss potential applications of the CNN-based
GW detection.

2. Data
2.1. 3-D Temperature Measurements Obtained by AIRS

AIRS (Chahine et al., 2006) is a nadir-sounding hyperspectral radiometer aboard NASA's Aqua satellite. It
operates in a near-polar, sun-synchronous orbit with an approximate orbital period of 100 min. Continuously
scanning +49.5° from the nadir in the across-track direction, it measures radiances in 2,378 infrared spectral
channels. Vertical profiles of parameters including temperature are obtained over an ~1,800-km (90-footprint)
wide swath. The across- and along-track spacings vary from ~13.5 X 13.5 km at nadir to ~41 X 21.4 km at the
swath edges. AIRS measurements are divided into 240 segments per day along the satellite track, with each
segment corresponding to 6 min of observations, referred to as a “granule.”

In this study, we use 3-D temperature measurements derived from the retrieval scheme proposed by Hoffmann
and Alexander (2009). This method utilizes two channels within a CO,-sensitive spectral range to generate
temperature profiles with a 3-km vertical spacing. The effective vertical resolution ranges from 7 to 14 km within
the altitude range of z = 20-60 km, depending on both altitude and latitude (Hindley et al., 2019). Nighttime
retrievals exhibit higher vertical resolution and lower noise levels compared to daytime retrievals, owing to
reduced effects of non-LTE.

2.2. High-Resolution JAGUAR Resampled as AIRS

The high-resolution version of the JAGUAR model (Watanabe & Miyahara, 2009) is a global spectral model with
a triangularly truncated spectral resolution of 639, corresponding to a minimum resolvable horizontal wavelength
of ~60 km. The vertical resolution is 300 m in the middle atmosphere, and the model top is set at z = 150 km. No
sponge layers are employed in the uppermost part of the model. Instead, the horizontal diffusion coefficient
gradually increases above the mesosphere. GW parameterizations are not used. Given these characteristics, the
model is considered suitable for GW analysis throughout the entire neutral atmosphere, from the surface up to
approximately z = 110 km.

Okui et al. (2021, 2022) performed hindcast simulations with the model by nudging its spectral components with
horizontal wavenumbers higher than 21 to the JAGUAR-Data Assimilation System (JAGUAR-DAS) Whole
neutral Atmosphere ReAnalysis (JAWARA, Koshin et al., 2025; Sato, 2025). The spectral nudging was first
conducted for 3 days, followed by a 4-day free-run simulation. This 7-day cycle was repeated every 4 days. In the
present study, only outputs from the free-runs are analyzed.

We compare GWs in the JAGUAR model with those observed by AIRS, using hindcast simulation outputs from
15 December to 28 February (hereafter DJF) in 2016/2017,2017/2018, and 2018/2019. Following the approach of
Okui et al. (2023), we first interpolate the model data onto a 1 km-spacing height grid by treating geopotential
height as an approximation of geometric height, which is appropriate in the stratosphere. JAGUAR temperature
fields are then sampled at the locations of the AIRS footprints. A vertical low-pass filter that depends on altitude,
latitude, and day-night conditions is applied to simulate the AIRS vertical resolution before the fields are sampled
at vertical levels with 3-km spacing to match the AIRS retrieval sampling. This processed JAGUAR temperature
data set is referred to as “JAGUAR-as-AIRS.” The subsequent analysis steps are common to both AIRS and
JAGUAR-as-AIRS data, as described in Section 3.1.
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3. Methods
3.1. Data Preprocessing

Before fitting the CNN (see Section 3.2) and performing spectral analysis (see Section 3.3), each 90 X 135
element “granule” (across-track X along-track) of AIRS measurements and JAGUAR-as-AIRS is interpolated
onto a regular grid oriented along the satellite track, with a horizontal spacing of 20 X 20 km. The regridded
granules are then detrended by removing fourth-order polynomial fits applied along the across-track direction in
order to exclude large-scale structures such as background temperature gradients and Rossby waves. The
sensitivity of the detrended AIRS temperature perturbations to different wavelengths is shown in Figure 2c¢ of
Hindley et al. (2019).

3.2. Convolutional Neural Network for Semantic Segmentation

The CNN for semantic segmentation developed in this study employs the U-Net architecture (Ronneberger
et al., 2015), which is widely used for segmentation tasks. The layer structure of the CNN is depicted in Figure S1
in Supporting Information S1. The CNN consists of seven blocks of layers distributed across four hierarchical
levels. The kernel size in the convolution layers is 3 X 3. To introduce nonlinearity and constrain the output range,
a rectified linear unit activation function is applied after each convolution layer. In the encoder path, down-
sampling is performed through 2 X 2 maximum pooling, while the decoder path uses transposed convolution with
2 X 2 kernels for upsampling.

Accuracy, that is, the proportion of correct classifications, is used as the evaluation metric, and binary cross
entropy is adopted as the loss function. Due to the significant class imbalance in the training data set, with the

number of pixels without waves (&V, ) far exceeding that of pixels containing waves (N,,,,¢). their contri-

owave

butions to the loss function are weighted by 0.5N-! and 0.5N_!

nowave wave?

ave.
respectively (King & Zeng, 2001). In the
output layer, a sigmoid activation function converts the output of each neuron into a probability ranging from
0 (no waves) to 1 (waves). In the result section, pixels with probabilities above a threshold of 0.5 are classified as
“wave regions.”

For training the CNN, we use wave masks calculated from regridded and detrended granules of AIRS retrieved
temperatures at z = 39 km using the neighborhood method of Berthelemy et al. (2025). The training data set used
in this paper covers December 2013—February 2014 and June—August 2014, periods of seasonally intense GW
activity. As a sensitivity test, we also trained the CNN using annual data from December 2013 to November 2014
and found no significant improvement in wave detection performance. A total of 43,440 granules are used, with
80% allocated to the training set and 20% to the test set, following the holdout method (Kohavi, 1995).

To standardize the input temperature fields, the Z-score normalization is applied. In the observational data, noise
also contributes to the standard deviation o, of temperature perturbations. Thus, directly dividing by o, results in
amplitudes too small for the CNN to detect wave-like structures effectively. Instead, input granules are
normalized by 0.5 o, where o, is estimated from 240 granules for each day. We have confirmed that normalizing
nighttime and daytime data separately does not yield significant differences in wave detection results.

Temperature fields of a numerical model such as JAGUAR, in contrast, do not contain the same level of noise as
observations. The variance in observations o2 is the sum of variances due to waves and noise, whereas JAGUAR-
as-AIRS theoretically contains only variance due to waves. To ensure consistent normalization between the
observational and model data sets, we normalize the perturbations in JAGUAR-as-AIRS data using the following
procedure. First, we estimate 0§ from AIRS observations separately for wave and non-wave regions classified by
the neighborhood method. The variance for non-wave regions, attributed almost entirely to noise, is 83.8% of that
in wave regions. This result suggests that waves account for 16.2% of the total variance in wave regions in the
AIRS observations. Then, we normalize JAGUAR-as-AIRS temperatures by 0.56,,/(0. 162)°°, where the standard
deviation o,, is estimated from 240 JAGUAR-as-AIRS granules for each day. This normalization step assumes
that model-simulated wave amplitudes are comparable to those in the observations. When this assumption holds
true, the normalization ensures that wave amplitudes in both data sets fall within a similar range, allowing the
CNN to effectively focus on relevant features.
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3.3. 2D + 1 S-Transform

To estimate amplitudes of detected waves, we perform spectral analysis using the 2D + 1 S-Transform (ST)
described by Wright et al. (2021). The 2D +1 ST is based on the multi-dimensional ST developed by Hindley
et al. (2019), which provides localized wave amplitudes and 3-D wavelengths at every location in the input data.
Specifically, the 2D +1 ST method applies a horizontal 2-D ST for each layer of the data, then computes phase
differences between groups of adjacent layers to obtain a better estimate of vertical wavelengths, which is ideal
for AIRS measurements with a relatively short vertical extent (z = 20-60 km) compared to their horizontal extent
(~2,000 km).

Here, we select z = 39 km as the altitude of temperature perturbations for which we perform CNN-based wave
detection and spectral analysis. This altitude corresponds approximately to the center of the altitude range where
the AIRS vertical resolution is still high, and noise levels are relatively low (Hindley et al., 2019).

4. Results and Discussion
4.1. Case Studies

Figure 1 shows maps of temperature perturbations and CNN-detected waves (i.e., temperature perturbations
masked in regions with probabilities of wave occurrence below 0.5) in AIRS and JAGUAR-as-AIRS data for
three sample cases. Owing to the strong class imbalance and inapplicability of the neighborhood method to
JAGUAR-as-AIRS, CNN performance cannot be reliably evaluated using statistical metrics (c.f., Figure S2 in
Supporting Information S1). Instead, we focus here on visually demonstrating wave detection results.

In Case 1 (Figures la—1d), featuring waves over the Scandinavian Peninsula on 20 January 2017, two distinct
wave packets are detected: one over the peninsula and another over the Norwegian Sea. The wave packet over the
peninsula exhibits larger amplitudes, reaching a maximum of ~12 K, and exhibits slightly longer horizontal
wavelengths (~300-500 km) than the one over the ocean. These waves are likely orographic waves generated by
flows over the Scandinavian Mountains. Similar wave packets also appear in JAGUAR-as-AIRS, with wave-
lengths comparable to those in the observations. On the other hand, wave-like structures that are not present in the
AIRS measurements are also observed in JAGUAR-as-AIRS. In both data sets, the CNN successfully detects
these waves while appropriately excluding Southern Europe, where wave-like structures are absent.

Case 2 features waves observed on 14 January 2018 (Figures 1e—1h) around Tropical Cyclone Berguitta, moving
through the Western Indian Ocean. To the east of the cyclone's center, marked by a cross in the center of the
panels, the CNN detects a small-scale wave packet in both the AIRS and JAGUAR-as-AIRS data. On the opposite
side, a larger-scale wave with a phase structure resembling a plane wave dominates. Given its upward propa-
gation, this wave has a westward intrinsic phase velocity. The AIRS measurements capture this wave more
distinctly than JAGUAR-as-AIRS.

Case 3 shows temperature perturbations around Tropical Cyclone Cebile on 2 February 2018 (Figures 1i—11). A
nearly concentric wave is observed and detected by the CNN east of the cyclone's center, with a horizontal
wavelength of ~200 km in both data sets. Additionally, a wave packet with longer south-eastward wavelengths
appears south of the cyclone. This wave packet, which is more pronounced in JAGUAR-as-AIRS, is also suc-
cessfully detected by the CNN.

Across all cases, the CNN demonstrates a capability for GW detection. Wavelengths, phase structures, and noise
levels in temperature perturbations appear to have only a limited impact on detection accuracy, particularly for
GWs with large amplitudes. For details on amplitudes and horizontal wavelengths of detected waves, see also
Figure S3 in Supporting Information S1.

4.2. Global Maps

Figures 2a—2h show the global distribution of averaged CNN outputs, which can be interpreted as probabilities for
wave occurrence. On average, GWs are more likely to be detected in JAGUAR-as-AIRS, which exhibits
significantly higher probabilities than the AIRS results at Northern Hemisphere (NH) midlatitudes (5°N—45°N)
during DJF 2018/2019. This difference is also evident, though less pronounced, in 2016/2017 and in the 3-year
DIJF average (Figures 2g and 2h).
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Figure 1. Maps of temperature perturbations (left) and those with higher probability than 0.5 (right), which are detected gravity waves, at z = 39 km. Panels (a, b, e, f, i,
and 1) (c, d, g, h, k, and 1) show results for the Atmospheric Infrared Sounder (AIRS) (Japanese Atmospheric GCM for Upper Atmosphere Research [JAGUAR]-as-
AIRS) data. Cases 1, 2, and 3 shown in panels (a—d, e-h, and i-1) feature waves over the Scandinavian Peninsula on 20 January 2017, Tropical Cyclone Berguitta on 14
January 2018, and Tropical Cyclone Cebile on 2 February 2018, respectively. Cross marks in the center of Figures 2e-21 indicate the centers of the tropical cyclones.
Note that the color bars for the AIRS and JAGUAR-as-AIRS data differ, allowing both detected and excluded perturbations to be clearly shown in each data set.

During DJF 2016/2017 (Figures 2a and 2b) and 2017/2018 (Figures 2c and 2d), high probabilities are concen-
trated along the stratospheric eastward jet over the northernmost Atlantic Ocean. In contrast, during DJF 2018/
2019 (Figures 2e and 2f), probabilities at mid- and high latitudes in the NH are significantly lower than in the other
2 years. A strong sudden stratospheric warming occurred from late December to January in this season (Rao
et al., 2019), leading to a significant reduction in GW activity in the NH stratosphere (Okui et al., 2023).

In the Southern Hemisphere (SH) subtropics, specifically at 10°S-30°S, high probabilities are observed around
the east coasts of South America, Africa, and the Maritime Continent (Figures 2g and 2h). These peaks align with
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Figure 2. (a-h) Probabilities of wave occurrence and (i—p) amplitudes of detected waves at z = 39 km averaged over DJF
2016/2017, 2017/2018, 2018/2019, and these three DJFs. The left-hand panels show the results from Atmospheric Infrared
Sounder (AIRS) observations, and the right-hand panels show the results from Japanese Atmospheric GCM for Upper
Atmosphere Research-as-AIRS.
OKUI ET AL. 7of 11

85U80]7 SUOLILLOD 3A 810 3(qeal|dde ayy Aq peusenob ae ssoiie O ‘8sn o Ss|n. 1oy AIq1T3UlUO A8]IM UO (SUORIPUOD-PUR-SWB 00" A8 |1M° Afe.d 1 |Bul [UO//:SANY) SUORIPUOD PUe SR | 843 88S *[5202/20/02] U0 AiqT aulluO A8|IM ‘€89STT 19S202/620T 0T/I0p/wod A8 | im Ariqiputjuo'sandnBe//:sdny wo.y pepeojumod ‘TT 'S202 ‘2008t76T



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2025GL115683

regions of heavy precipitation, including the South Atlantic convergence zone (SACZ, e.g., Carvalho et al., 2004),
South Indian convergence zone (SICZ, e.g., Cook, 2000), and South Pacific convergence zone (SPCZ, e.g.,
Vincent, 1994). The SACZ and SICZ have a northwest-southeast orientation, and the SPCZ extends south-
eastward over the South Pacific. Interestingly, AIRS wave probabilities align more clearly with these orienta-
tions of the convergence zones (Figure 2g), whereas in the JAGUAR-as-AIRS data, the distribution appears more
zonally uniform. Additionally, GWs in the model data are more widespread along the intertropical convergence
zone as shown in Figure 2h. These differences may stem from potential biases in the model representation of
convection and convective GWs. Another possible explanation is that model GWs may propagate over longer
horizontal distances and converge more strongly toward the core of the stratospheric summer jet than in the real
atmosphere. GWs in JAGUAR-as-AIRS data exhibit longer horizontal wavelengths (as shown in Figure S3b in
Supporting Information S1). Such waves typically have higher horizontal-to-vertical ratios of their group ve-
locities, which may contribute to the broader zonal distribution of GWs along the summer jet.

Figures 2i—2p shows the global distribution of the averaged amplitude of CNN-detected GWs. In general, the
geographical distributions of GW activity are similar between AIRS and JAGUAR-as-AIRS. The results show
amplitude peaks consistently in the SH subtropics and Eastern Eurasia from 2016/2017 to 2018/2019 (Figures 2i—
2n), the Rocky Mountains, southern Greenland, and the Scandinavian Peninsula in 2016/2017 (Figures 2i and 2j),
and the North Atlantic Ocean in 2017/2018 (Figures 2k and 21). In both data sets, amplitudes in the NH during DJF
2018/2019 (Figures 2m and 2n) are significantly lower compared to those during DJF 2016/2017 (Figures 2i and
2j) and 2017/2018 (Figures 2k and 21).

Discrepancies are also identified. Regions with missing values correspond to areas where no waves are detected
(i.e., the probability never exceeds 0.5) through the analysis period. At NH low latitudes, higher probabilities and
smaller non-wave regions are observed in JAGUAR-as-AIRS than the AIRS measurements (Figures 2a—2h). In
such regions, amplitudes are generally smaller than ~2 K. A possible explanation for this difference is a
remaining influence of noise, in which waves with amplitudes comparable to the noise level (1.4-2.1 K, Hoff-
mann & Alexander, 2009) are less likely to be detected in AIRS data. Another notable discrepancy is that am-
plitudes along the winter jet are larger in JAGUAR-as-AIRS, but generally not greater by a factor of two. This fact
indicates two possible model biases: one being an overestimation of wave activity and the other a bias toward
longer vertical wavelengths, which are more readily detectable within the AIRS spectral sensitivity.

When compared with previous studies, the large amplitudes between 10°S and 30°S are consistent with the large
climatological zonal momentum flux in this latitude range, as shown by Hindley et al. (2020). The longitudinal
distribution of these peaks also broadly agrees with previous studies on the climatology of GW activity, including
those of McLandress et al. (2000) and Sato et al. (2016). McLandress et al. (2000), using the Microwave Limb
Sounder, estimated noise variance based on the flat structure in temperature variances at low latitudes. Mean-
while, Sato et al. (2016), using AIRS temperature measurements, focused on horizontal wavenumbers where
noise influence is considered small. By excluding regions without waves, the CNN-based wave detection enables
a more direct observation-to-model comparison without requiring assumptions regarding magnitude or spectral
range of noise, as was necessary in previous studies.

5. Conclusions

A CNN for semantic segmentation has been developed to detect GWs both from satellite temperature pertur-
bations and high-resolution GCM simulations. This is the first CNN-based global GW detection approach for the
stratosphere, and demonstrates the applicability of this approach to both satellite observations and model sim-
ulations, while previous approaches have only been applicable to one or the other.

The CNN was trained using a large data set of wave regions detected by Berthelemy et al. (2025), which separates
wave and noise regions based on wavelength consistency within neighboring pixels. Once trained, however, our
CNN method does not rely on noise characteristics or spectral properties to identify waves. As a result, the wave
detection is more robust across different noise levels, including the absence of any noise. The CNN not only
shows similar performance detecting waves in AIRS temperatures to the neighborhood method, but also provides
consistent wave detection in model simulation data. Note that, however, it remains inherently impossible to
completely eliminate the influence of observational noise.
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Detected GWs were compared between AIRS temperature measurements and JAGUAR simulation outputs
resampled to match the AIRS sampling locations and vertical resolution, providing an almost “apples-to-apples”
comparison of observed and modeled waves. The results show generally good agreement between the data sets in
both the spatial distribution of GW activity and their amplitudes, although more waves are detected in the
JAGUAR-as-AIRS data than in AIRS observations. An interesting discrepancy is the zonally uniform distribution
of GW occurrence along the stratospheric summer jet in JAGUAR, suggesting potential model biases in GWs in
the tropics and requiring further investigation.

The CNN-based wave detection offers key advantages, including not only its applicability to both satellite and
model data but also its low computational cost. Other methods, such as the amplitude method and neighborhood
method, typically incorporate spectral analysis as part of their detection process. The CNN allows for the pre-
screening of noise-only granules, enabling spectral analysis to be performed only on data containing waves.
This efficiency will facilitate GW analysis using the AIRS data, currently accumulated for 23 years.

The past 4 decades have been a golden age of stratospheric measurements. To fully utilize the extensive data
collected during this period, it is essential to conduct statistical and multi-instrumental analyses of GWs in an
effective and comprehensive manner, in combination with high-resolution model data. The method presented
here is applicable to other nadir sounders, such as the Infrared Atmospheric Sounding Interferometer (Blumstein
et al., 2004; Clerbaux et al., 2009; Hoffmann et al., 2014) aboard EUMETSAT's Meteorological Operational
(MetOp) satellites and the Cross-track Infrared Sounder (CrIS) (Bloom, 2001; Eckermann et al., 2019) on
NOAA's Joint Polar Satellite System satellites; we have tested and confirmed that the method works well for
temperature perturbations observed by CrlS, as shown in Figure S4 in Supporting Information S1. Fair and
detailed comparisons between these satellite data and GW-resolving model outputs enabled by the CNN will
enhance our understanding of stratospheric GWs, providing the ground-truth needed to refine GW parameteri-
zations in future climate-scale models and in turn reveal hidden biases that affect other simulated geophysical
systems.

Data Availability Statement

The AIRS temperature retrievals (Hoffmann & Alexander, 2009) are available from https://datapub.fz-juelich.de/
slcs/airs/gravity_waves (Hoffmann, 2021). The CNN, a sample code to run the CNN, and processed JAGUAR-as-
AIRS data can be downloaded from https://doi.org/10.5281/zenodo.15382321 (Okui, 2025). Version R2022b of
MATLAB was used for spectral analysis of gravity waves (https://www.mathworks.com/products/matlab.html).
Figures were produced using Python 3.10 (https://www.python.org/).
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